
LLNL-CONF-644323

Estimating User-Produced-Multimedia
Classification Performance Efficiently with
Python

P. Birsinger, B. Elizalde, K. S. Ni, G. Friedland, A.
Fox

September 27, 2013

ICASSP 2014
Florence, Italy
May 4, 2014 through May 9, 2014



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Estimating User-Produced-Multimedia Classification
Performance Efficiently with Python

Peter Birsinger
UC Berkeley

peterbir@eecs.berkeley.edu

Benjamin Elizalde
International Computer

Science Institute
benmael@icsi.berkeley.edu

Karl Ni
Lawrence Livermore National

Laboratory
ni4@llnl.gov

Gerald Friedland
UC Berkeley

fractor@icsi.berkeley.edu

Armando Fox
UC Berkeley

fox@cs.berkeley.edu

ABSTRACT
This paper presents a strategy to efficiently produce dis-
tributed code that characterizes classifier performance on
large datasets of multimedia for event detection. We pro-
pose a system that implements the Bag of Little Bootstraps
(BLB) algorithm to obtain reasonable performance bounds
on massive video datasets like TRECVID Media Event De-
tection, PASCAL Video Object Classifier, and MediaEval
challenges. The proposed technique assigns accuracy mea-
sures by generating distributed bootstrapping code from se-
rial Python. We leverage Domain-Specific Embedded Lan-
guage (DSEL) and previously developed DSEL compiler,
which has been constructed with the Selective Embedded
Just-In-Time Specialization (SEJITS) approach. We de-
scribe the bootstrapping application in Python to multi-
media evaluation. We demonstrate its capability to auto-
matically generate distributed and scalable code, addressing
demanding data sizes and computational workloads. We ob-
tain reasonable bounds for classifier performance predictions
on user-produced videos from the 2013 TRECVID MED cor-
pus. Additionally, we also show the accessibility to such
computations for non-performance programmers by expos-
ing the orders of magnitude speedup obtained over the na-
tive Python code.

Keywords
Multimedia classification; bootstrapping; SEJITS

1. INTRODUCTION
With the ubiquity of recording devices and online sharing
websites, access to and the quantity of user-produced mul-
timedia data has grown exponentially. One of the problems
associated with such a large amount of consumer data is
that of semantically retrieving a desired video (e.g., mar-
riage proposals or changing a car tire.) For this reason, re-
cent competitive evaluations from NIST, i.e. the TRECVID

Multimedia Event Detection (MED) Task [14], MediaEval,
Pascal VOC, etc., have focused on investigating and devel-
oping core detection technologies to analyze and fetch multi-
media files. Algorithms developed for solving such a problem
must not only scale well, but the criterion for success is their
precision and accuracy. Preparation of any multimedia clas-
sification system to generalize to unseen data must therefore
depend on our confidence in estimator quality based on its
performance on known a training and development set.

Fortunately, assigning measures of accuracy to classifier per-
formance from sample estimates is well understood [7]. Ex-
tensive investigation of bootstrapping and its variations [5,
9, 4, 13] has identified bootstrapping as a prime, albeit im-
perfect[8], solution to this problem. While bootstrapping
techniques have been particularly effective in evaluating pa-
rameters for smaller datasets over a wide range of classifiers,
they must repeatedly recalculate classifier results on resam-
ple sets comparable to the original dataset and therefore
scale poorly. Variants of bootstrap address some computa-
tional issues, though they are sensitive to classifier type and
experimental parameters. Alternatively, Bag of Little Boot-
straps (BLB) [11, 12] algorithm offers a simple means, which
involves the use of smaller subsets of distinct points, to avoid
the problems of traditional bootstrap and its variants and
evaluate estimator quality on large datasets. We focus on
using BLB to estimate classifier performance specifically on
applications involving large datasets of multimedia.

When dealing with multimedia data, particularly given the
increasing size of modern datasets such as the TRECVID
MED 2013 dataset, efficiency becomes paramount. BLB is
specifically designed to run quickly in a distributed setting
on large amounts of data. For machine learning applications,
scientists typically prototype with languages like sequential
Python code. In this work, we leverage the DSEL com-
piler [3], which can convert input Python applications into
scalable applications able to run on the Spark cluster com-
puting system [15]. This DSEL compiler makes use of Selec-
tive Embedded Just-In-Time Specialization (SEJITS) [10],
an approach for converting DSELs in productivity level lan-
guages to high performance efficiency language (e.g. C++
or Cilk) code.

We propose and analyze an implementation of a BLB appli-
cation that estimates the standard deviation of the equal



error rate (EER) of a video detection system in Python
DSEL. The approach generates distributed code that effi-
ciently predicts performance bounds on a subset of user-
produced videos from the TRECVID MED 2013 dataset [14]
from performance on the Kindred Collection. We demon-
strate that the predicted performance falls in line with the
obtained error bounds, showing that despite high variability
in consumer-produced videos, reasonable predictions regard-
ing performance can still be made. Finally, we further mo-
tivate usage of our methodology by comparing runtimes of
large BLB applications with the original, serial Python code
and the generated distributed code run on Amazon EC2
clusters. By demonstrating a difference of over two orders
of magnitude between the different versions, it becomes clear
that this methodology makes accessible an array of multime-
dia classifier estimation computations for those who never
wish to leave the world of Python but previously were forced
to.

2. METHODOLOGY DESCRIPTION
We propose a methodology to efficiently estimate video de-
tection systems’ performance on event detection tasks; the
methodology enables coding of bootstrapping applications
to quantify uncertainty on performance estimates in Python,
yet results in scalable, distributed code. When coding the
bootstrapping application in Python, multimedia experts
need only adhere to the specified DSEL for BLB, from which
they must define with a modest subset of Python the sta-
tistical function to be estimated on the data set, along with
the reducer function (e.g. standard deviation) that mea-
sures the error on the estimate. More detailed informa-
tion about the DSEL, or the subset of Python allowed can
be found in [3], but as an overview, all basic flow control
statements (e.g. for, while, if), singularly-typed lists,
variable assignments, arithmetic operations, basic type con-
versions, and simple list and string operations (e.g. len,

range, split) are available.

Figure 1: Characterize Estimator Performance

For this paper’s experiments, we choose to have the statis-
tical function compute the EER of a multimedia classifier
on a set of feature vectors, alternating between passing in
the classification scores of each file, and computing them
on the fly when given the models and extracted file feature
vectors. The reducer function, which measures the error on
the estimate, is the standard deviation. It would, however,
be simple to modify the statistical function to estimate an
alternate measure of classification performance, such as the
misdetection rate at a certain false alarm rate. Similarly, the

error estimate function could instead indicate uncertainty in
terms of a confidence interval.

The already existing BLB DSEL compiler consumes the
BLB Python application, and emits a scalable, distributed
BLB application runnable on the Spark cluster computing
system. Spark, similar to Map-Reduce, operates on clus-
ters of commodity hardware, such as those purchasable with
Amazon’s EC2. Multimedia feature vectors, machine learn-
ing models, classification scores, or other input data is read
from the Hadoop File System (HDFS) to support the large
of multimedia datasets.

The Python code can similarly be mapped to backends be-
sides Spark, namely OpenMP and Cilk, enabling efficient
parallelism on a single node, further described in [3]. We
do not utilize these alternate backends in the experiments
because the less-general DSEL that they compile does not
support the entirety of our applications. The pure Python
code can additionally be run as unoptimized Python instead
of being run on Spark, which is useful for debugging and
small applications. This reusability of simple Python is con-
venient, since many bootstrapping applications, especially
when file classification scores need not be computed, can
run in a reasonable time in pure Python. However, for the
larger applications as we later show, relying on the generated
code is a must.

Figure 2: Generating Bag of Little Bootstrap
Python Code

3. EXPERIMENTAL SETUP
The data used in the following experiments is a subset of
the NIST TRECVID MED 2013 corpus, which comprises
160,000 consumer-produced videos of around three minutes
each. For training, we select roughly 100 videos belonging to
each of the 20 different “events,” or classes, that range from
changing a car tire to making a sandwich, and the 4,869
negative videos that belong to no event.

3.1 Estimating Classifier Performance
We estimate video detection system performance on a sub-
set of the MED dataset from performance on the Kindred
dataset. Classifying based on audio properties alone, we ex-
tract feature vectors from all videos using an i-vector system
[6]. We then construct over 100 different training sets each
containing the entirety of the roughly 100 training positives
for each event but varying in the set of negatives used. The
different negative sets are constructed from taking different



representative samples from a k-means-clustering of the en-
tire 4,869 training negatives provided. We next utilize SVM-
light [2], an online support vector machine (SVM) library,
to construct the training models for each of the training sets
and to evaluate the models on the Kindred dataset in terms
of EER, recording the best EER for each event.

To estimate the variability of the EERs, we run BLB 5 times
on the Kindred dataset with 30 subsamples, 100 bootstraps,
and a γ of 0.9 and average the results. We have empirically
selected these parameters to ensure that the EERs from dif-
ferent BLB runnings match in the at least hundredths digit–
most EERs obtained do agree to this standard with these
parameters, but do not as well with reduced parameter sizes.
The standard deviations obtained from BLB indicate the
variation in EERs to be expected on datasets similar to Kin-
dred, such as our primary test set which, although somewhat
larger, contains videos that are sampled from the same un-
derlying distribution, with even a slight overlap. To measure
comparable performance on the primary test set, we again
select a favorable training set in the manner described be-
fore (experimenting with the same different sets of training
negatives) and record the EERs for the best training set.

3.2 Comparison to Naïve Python
We compare the performance of the generated Spark code
to that of näıve Python, to motivate use of this method-
ology. We obtain runtimes for a BLB application that re-
ceives video classification scores and for a BLB application
that receives video feature vectors and SVM models in order
to compute the classification scores on the fly. In the pre-
vious section’s experiments, there is no need to recompute
the scores for each bootstrap, and so they can be passed in,
but one can imagine classification applications where the file
classification scores depend on the other files in the set. Both
applications proceed to compute the classifier’s EER for each
event, and output the standard deviations that quantify un-
certainty on the EER estimates. To simulate a “large” boot-
strapping application, we duplicate the input scores (and
feature vectors) from the primary test set five times over to
create an input of 131,995 scores (or feature vectors), still
tens of thousands of items less than the entire MED corpus
contains.

For the application receiving the scores, we again use param-
eters of 30 subsamples, 100 bootstraps, and a γ of .9. We
run the Python version of the application on 1 Amazon EC2
[1] High-Memory On-Demand Instance (m2.4xlarge) and we
run the distributed version of the application on 7 (1 mas-
ter, 6 slave nodes) Amazon EC2 High-Memory On-Demand
Instances (m2.4xlarge). For the application computing the
scores, we use parameters of 2 subsamples, 5 bootstraps,
and a γ of .9 (in light of the lengthy Python runtimes). We
run the Python version of the application on 1 Amazon EC2
[1] High-Memory On-Demand Instance (m2.4xlarge) and we
run the distributed version of the application on 13 (1 mas-
ter, 12 slave nodes) Amazon EC2 High-Memory On-Demand
Instances (m2.4xlarge). We further test the distributed ver-
sion with parameters of 20 subsamples, 50 bootstraps, and
a γ of 0.9 with the same number of nodes.

4. RESULTS

Our primary test set consists of 26,399 files, of which 24,920
files do not correspond to any event while the number of
positives for each event varies between 15 and 234. Addi-
tionally, we use the Kindred set, containing 14,249 files of
which 12,770 are negatives, as a secondary test set.

4.1 Estimating Classifier Performance
Figure 3 displays the EERs of the video detection system on
both the Kindred and MED data sets along with the BLB
predicted standard deviations for each event. The average
EERs for the Kindred and MED datasets are 36.1% and
34.9%, respectively. The average predicted standard devia-
tion is 7.2% and the average difference between event EERs
for the Kindred and MED dataset in terms of predicted stan-
dard deviations for that event is .59. Interestingly, events
6-15 have an average number of 123.9 positives while events
21-30 have an average of 24 positives in the MED test set
and this results in a significantly lower standard deviation of
4.3% versus 10.2% for the former. This indicates that high
numbers of test positives may lead to more refined perfor-
mance prediction estimates.

Although not all event EERs fall within one event stan-
dard deviation of each other, with the largest gap coming
from event 6 with a 1.81 standard deviation gap, the perfor-
mance on the MED dataset is reasonably bounded by the
BLB’s predictions. Put otherwise, the differences in EERs
between the two sets, averaging 3.7%, correspond well to
the scale of BLB standard deviations predictions, averaging
7.2%. This suggests that despite high acoustic variability
and little structure, classification performance on consumer-
produced multimedia files can be consistently predicted.

4.2 Comparison to Naïve Python
As seen in Figure 4, the Spark code achieves more than a
two order of magnitude speedup over the Python code, for
both BLB applications tested. The Python code requires
an average of 20681 seconds (5.74 hours) and 32142 seconds
(8.93 hours) to run when given scores and when not, respec-
tively, whereas the Spark code requires an average of 197.14
seconds (3.29 minutes) and 127.74 seconds (2.13 minutes) to
run when given scores and when not, respectively. We can
extrapolate runtimes for the BLB application that computes
the scores for larger applications. Increasing the number of
subsamples and bootstraps up to 20 and 50, respectively,
results in 100 (10*10) times more estimates on bootstraps
that need to be computed. A 100-fold increase in runtime
would amount to a total runtime of 892 hours, likely longer
than a researcher’s patience would last.

However, the generated Spark code completes in under 7
minutes, nearly 4 orders of magnitude better than the ex-
trapolated Python runtime. The generated code performs
better here relatively since the increased computational load
supports a far greater degree of parallelism, whereas on the
smaller computation with only 2 subsamples and 5 boot-
straps, the need for only 10 bootstrap estimates severly
caps the maximum paralellism. This trend of the gener-
ated code increasingly outperforming the Python code as
the bootstrap computations needed and input data size in-
crease would presumably remain true with more taxing ap-
plications since the generated code can simply run on more
and more nodes to accomodate the higher demand.



(a) Events 6-15

(b) Events 21-30

Figure 3: The performance of the video detection
system on the Kindred and MED datasets. The er-
ror bars display the BLB standard deviations that
estimate the variance on the MED dataset from the
performance on the Kindred dataset.

5. FUTURE WORK
Future work involves further probing the user-produced video
space with this methodology. This could involve examin-
ing the relationships between the numbers of training and
test positives, the EERs, and BLB predicted standard devi-
ations.

6. CONCLUSION
Our proposed methodology makes accessible to multimedia
classification researchers coding in Python what was never
accessible before: an efficient means to estimate video de-
tection system performance via bootstrapping. This new-
found accessibility to efficiency becomes critical on increas-
ingly large consumer-produced multimedia datasets, as we
demonstrate. With the aid of this methodology, the con-
struction and improvement of video detection systems are
made more feasible.

7. ACKNOWLEDGEMENTS
We thank Adam janin for his valuable technical support and
discussion.

Research supported by Microsoft (Award #024263), Intel
(Award #024894), and Lawrence Livermore National Labo-

Figure 4: Comparison of runtimes of native Python
and generated Spark code. The Spark code, finish-
ing in less than 7 minutes achieves more than a 2 or-
der of magnitude speedup over the 5+ hour Python
times. The largest bar is the extrapolated runtime
of Python on the BLB application that computes the
scores with 100 times more bootstraps to compute
than it we test with.

ratory (under Contract DE-AC52-07NA27344), and by match-
ing funding by U.C. Discovery (Award #DIG07-10227). Ad-
ditional support comes from Par Lab affiliates Nokia, NVIDIA,
Oracle, and Samsung. Research also funded by DARPA
Award Number HR0011-12-2-0016.

Supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior National Busi-
ness Center contract number D11PC20066. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusion contained
herein are those of the authors and should not be interpreted
as nec- essarily representing the official policies or endorse-
ment, either expressed or implied, of IARPA, DOI/NBC, or
the U.S. Government.

8. REFERENCES
[1] Amazon elastic compute cloud (amazon ec2).

http://aws.amazon.com/ec2/.

[2] Multi-class support vector machine. http:
//svmlight.joachims.org/svm_multiclass.html.

[3] P. Birsinger, R. Xia, and A. Fox. Scalable
bootstrapping for python. ACM International
Conference on Information and Knowledge
Management, 2013.

[4] M. Chernick, V. Murthy, and C. Nealy. Application of
bootstrap and other resampling techniques: evaluation
of classifier performance. Pattern Recognition Letters,
3(3):167–178, 1985.

[5] B. Efron. Bootstrap methods: another look at the
jackknife. The annals of Statistics, pages 1–26, 1979.

[6] B. Elizalde, H. Lei, and G. Friedland. There is no data
like less data: percepts for video concept detection on
consumer-produced media. In IEEE International
Symposium on Multimedia ISM2013. IEEE, 2013.

[7] K. Fukunaga and R. R. Hayes. Estimation of classifier
performance. Pattern Analysis and Machine



Intelligence, IEEE Transactions on, 11(10):1087–1101,
1989.

[8] A. Isaksson, M. Wallman, H. Göransson, and M. G.
Gustafsson. Cross-validation and bootstrapping are
unreliable in small sample classification. Pattern
Recognition Letters, 29(14):1960–1965, 2008.

[9] A. K. Jain, R. C. Dubes, and C.-C. Chen. Bootstrap
techniques for error estimation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
(5):628–633, 1987.

[10] S. A. Kamil. Productive High Performance Parallel
Programming with Auto-tuned Domain-Specific
Embedded Languages. PhD thesis, EECS Department,
University of California, Berkeley, Jan 2013.

[11] A. Kleiner, A. Talwalkar, P. Sarkar, and M. Jordan.
The big data bootstrap. arXiv preprint
arXiv:1206.6415, 2012.

[12] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan.
A scalable bootstrap for massive data. arXiv preprint
arXiv:1112.5016, 2011.

[13] B. Sahiner, H.-P. Chan, and L. Hadjiiski. Classifier
performance prediction for computer-aided diagnosis
using a limited dataset. Medical Physics, 35:1559,
2008.

[14] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation
campaigns and trecvid. In MIR ’06: Proceedings of the
8th ACM International Workshop on Multimedia
Information Retrieval, pages 321–330, New York, NY,
USA, 2006. ACM Press.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages
10–10, 2010.


